Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.05.23299493

ABSTRACT

Robust testing capacity was necessary for public health agencies to respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease 19 (COVID-19) pandemic. As the nation faced the need for robust testing capacity, it became necessary to use all possible resources. In many cases, veterinary diagnostic laboratories rose to meet this demand because these facilities routinely perform high throughput diagnostic testing of large animal populations and are typically familiar with pathogens of high pandemic concern. In this study, we evaluated the impact of veterinary diagnostic laboratories in the United States on SARS-CoV-2 testing. Results of surveys, semi-structured interviews, and analysis of publicly available information showed that veterinary diagnostic laboratories had a substantial impact on human health through population-level testing in the COVID-19 response, supporting timely and informed public health interventions. This success was not without significant hurdles, as many participating veterinary diagnostic laboratories experienced restriction in their response due to difficulties obtaining the Clinical Laboratory Improvement Amendments (CLIA) certification required to conduct human diagnostic testing. Our results point out the importance of reducing hurdles before the next major public health emergency to enhance access to testing resources overall and to ultimately improve population health.


Subject(s)
COVID-19 , Coronavirus Infections
2.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0801.v1

ABSTRACT

The unprecedented COVID-19 pandemic posed major challenges to local, regional, and global economies and health systems, and fast clinical diagnostic workflows were urgently needed to contain the spread of SARS-CoV-2. Here, we describe the platform and workflow established at the Cornell COVID-19 Testing Laboratory (CCTL) for high-throughput testing of clinical samples from the university and the surrounding community. This workflow enabled efficient and rapid detection, and successful control of SARS-CoV-2 infection on campus and its surrounding communities. Our cost-effective and fully automated workflow enabled testing of over 8,000 pooled samples per day and provided results for over 2 million samples. Automation of time- and effort-intensive sample processing steps such as accessioning and pooling increased laboratory efficiency. Customized software applications were developed to track and store samples, deconvolute positive pools, track and report results and for workflow integration from sample receipt to result reporting. Additionally, quality control dashboards and turn-around time tracking applications were built to monitor assay and laboratory performance. As infectious disease outbreaks pose a constant threat to both human and animal health, the highly effective workflow implemented at CCTL could be modeled to establish regional high-capacity testing hubs for infectious disease preparedness and emergency response.


Subject(s)
COVID-19 , Communicable Diseases
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.13.21266305

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n=29), asymptomatic (n=31), or post-symptomatic (n=15). Specimens were collected at one time point from each individual, between day 1 to 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by healthcare provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from post-symptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals.


Subject(s)
COVID-19 , Sublingual Gland Neoplasms
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.22.213959

ABSTRACT

We describe the first cases of natural SARS-CoV-2 infection detected in animals in the United States. In March 2020, four tigers and three lions at the Bronx Zoo developed mild respiratory signs. SARS-CoV-2 RNA was detected by rRT-PCR in respiratory secretions and/or feces from all seven affected animals; viral RNA and/or antibodies were detected in their keepers. SARS-CoV-2 was isolated from respiratory secretions or feces from three affected animals; in situ hybridization co-localized viral RNA with cellular damage. Whole genome sequence and haplotype network analyses showed tigers and lions were infected with two different SARS-CoV-2 strains, suggesting independent viral introductions. The source of SARS-CoV-2 infection in the lions is unknown. Epidemiological data and genetic similarities between keeper and tiger viruses indicate human to animal transmission.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL